Review: Powers and Exponent Laws

Complete the following table. 1.

Power	Base	Exponent	Repeated Multiplication	Standard Form
3 ⁵	3	5	3×3×3×3	243
$(-2)^4$	-2	4	(-2)×(-2)×(-2)×(-1) 16
103	10	3	10×10×10	1000
-26	2	6	$-(2\times2\times2\times2\times2\times2)$	-64

Write as a power of 10.

b)
$$10 \times 10 \times 10 \times 10$$

$$\frac{1}{1}$$

3. Write each expression as the product or a quotient of powers.

a)
$$(2 \times 3)^5 2^5 \times 3^5$$

b)
$$\left(\frac{1}{3}\right)^2 \frac{1^2}{3^2}$$
 or $1^2 \div 3^2$

c)
$$(12 \div 4)^3 12^3 - 4^3$$

Write each expression as a single power and then evaluate it.

a)
$$(9^8)^0 = 9^0 = 1$$

b)
$$[(-2)^4]^2$$
 $(-2)^8 = 256$

c)
$$-(3^2)^3 - 3^6 = -729$$

Write each expression as a single power and then evaluate it.

a)
$$3^3 \times 3^2$$
 $3^5 = 247$

a)
$$3^3 \times 3^2$$
 $3^5 = 243$ b) $(-2)^4 \times (-2)^0$ $(-2)^4 = 16$

c)
$$5^{11} \div 5^{10}$$
 $5^{1} = 5$

d)
$$10^8 \times 10^2 \div 10^6$$
 $10^{10} \div 10^6 = 10^4 = 10000$

e)
$$\frac{(-3)^5 \times (-3)^6}{(-3)^7 \times (-3)^1} = \frac{(-3)^{11}}{(-3)^8} = -27$$

6. a) For each group of powers, which represents the
--

ii)
$$2^{10}$$
 or 10^2 2^{10} iii) 5^1 or 1^5 5^1

7. a) Evaluate each expression.

$$i)$$
 -2^4 $|$ φ

i)
$$-2^4 - | \phi$$
 ii) $(-2^4) - | \phi$ iii) $(-2)^4 | \phi$

Evaluate each expression. Show your work.

a)
$$(-14-6)^2 + 11$$

 $(-20)^2 + 11$
 $400 + 11$
 $= \boxed{411}$

b)
$$8 \div (-2) + (4 \times 2)^2$$

 $(-4) + 8^2$
 $-4 + 64 = 60$

c)
$$[7-(-3)]^4-(30 \div 6)^4$$

 $10^4 - 5^4$

e)
$$(6-8)^5 \div (-4)$$

 $(-2)^5 \div (-4)$
 $(-32) \div (-4) = 8$

d)
$$[(4-10)^3 \times (3+3)^5]^0$$
 = []

f)
$$-40 - (8 - 3)^3$$

 $-40 - 5^3$
 $-40 - 125 = -165$

g)
$$2^4 \times 2^1 - 2^3 \times 2^2$$

 $2^5 - 2^5 = 0$

h)
$$4^2 \times 4^1 + 3^3 \times 3^2$$

 $4^3 + 3^5$
 $6^4 + 2^4 = 307$

i)
$$(-4)^3 \div (-4)^2 \times (-4)^0 + (-4)^2 \div (-4)^3 + (-4)^3$$

Add brackets to make the expression correct.

$$5 \times (4^2 - 2^3) + 3^3 \div 3 = 49$$

10. Danielle and Sara each solved this expression: $(-3^4 \times 4 - 1) \div (-5)^2$

Danielle found 13 for her answer and Sara found – 13 for her answer.

Who was right? Sara

What was the error of the student who had the wrong answer?

11. A square metre is 1 m by 1 m.

a) Write 1 m² in square centimetres a) as a product of powers of 10 and b) as a single power of 10. $10^2 \times 10^2 = 10^4$

b) Write 1 m² in square millimetres a) as a product of powers of 10 and b) as a single power of 10. $(O^3 \times IO^3 =)O^4$

12. Simplify each expression using exponent laws. Evaluate each expression. Show all your work.

a)
$$[(-3)^3]^3 \times [(-4)^0]^3 - [(-3)^5]^0$$
 b) $[(-3)^9 \times (-4)^0 - (-3)^6$
 $(-19 683) \times 1 - 1 = -19 684$

b)
$$[(-4) \times (-5)]^4 + [(-4)^2]^2 - [(-2)^8 \div (-2)^7]^3$$

13. Mr. Zucchini used his calculator to evaluate the expression: $\frac{9^4}{9^2 + (-9)^2}$

He got 1 for his answer.

- a) Is he right? \mathbb{N}
- b) If not, what was his mistake? He multiplied 92 x(-9)2. You can't do this. He should have added
- c) Show a complete solution to this problem.

$$\frac{9^4}{9^2 + (-9)^2} = \frac{6561}{81 + 81} = \frac{6561 \div 81}{162 \div 81} = \boxed{81}$$

$$07 = \frac{1}{40^{\frac{1}{2}}}$$

14. Simplify then evaluate:

$$a) \frac{5^{3} \times 5^{3} \times 3^{4} \times 3^{3} \times 5^{2})}{3^{2} \times 5^{3} \times 3^{2} \times 5^{2})} \frac{5^{8} \times 3^{7}}{5^{5} \times 3^{4}} = 5^{3} \times 3^{3}$$

$$= 125 \times 27$$

$$= 3375$$

b)
$$(-2)^{3} \times 3^{7} \times (-2)^{6} \times 3^{2} \times 7^{9} \times 7^{5} \times 3 \times (-2)^{2})$$
 $(-2)^{11} \times 3^{10} \times 7^{14}$ $(-2)^{4} \times (-2)^{4} \times (-2)^{4} \times 3^{9} \times 7^{7} \times 7^{2}$ $(-2)^{8} \times 3^{9} \times 7^{13}$ $= (-2)^{3} \times 3 \times 7$ $= -8 \times 3 \times 7$ $= -168$