Scale Diagrams
Foundations 11

Name: \qquad
\qquad Date: \qquad
Scale: Patio that compares the size of a diagram or model or image to the original size of the object EX. Icm:lkm on a map

Scale Factor: The number by which each dimension of an original figure or object is multiplied to produce an enlarged or reduced version

$$
\text { Scale Factor }=k=\frac{\text { image } / \text { model }}{\text { actual }}
$$

Ways to Write Scale Factors

When the factor is: <1: smaller than original >1 : bigger than original

$$
\begin{aligned}
& \text { Ratio: } 1 \mathrm{~cm}: 20 \\
& \text { Fraction: } \frac{1}{20} \\
& \text { Decimal: } 0.05
\end{aligned}
$$

$$
\text { Percent: } 5 \%
$$

Calculating Scale Factor
Ex. The diameter of an animal cell is actually 0.25 mm . If the diameter of the animal cell is drawn as 3.5 cm , what scale factor was used to draw the scale diagram?

$$
\begin{aligned}
& \left.k=\frac{\text { diagram }}{\text { original }}\right\} \begin{array}{l}
\text { must have the } \\
\text { some units }
\end{array} \\
& =\frac{3.5 \mathrm{~cm}}{0.025 \mathrm{~cm}}=\frac{140}{\text { (Decimal) } \quad \frac{140}{1}} \\
& 0.25 \mathrm{~mm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \\
& =0.025 \mathrm{~cm} \\
& \text { Ratio 140:1 } \\
& \text { Percent } \\
& 14000 \%
\end{aligned}
$$

Ex. The actual thickness of a book is 3.5 cm . What would be the diagram depth if a scale of 0.9 were used?

$$
6.9 \times 3.5=3.15 \mathrm{~cm} \text { thick }
$$

$$
\frac{0.9}{4}=\frac{x}{3.5}
$$

on diag
Ex. The distance between two cities on a map is 5.4 cm . The map was made using a scale of 1 cm to 300 km . What is the actual distance between the two cities?

$$
\frac{11 \mathrm{~cm}}{300 \mathrm{~km}}=\frac{5.4 \mathrm{~cm}}{x} \frac{300 \mathrm{~km} \times 5.4 \mathrm{~cm}}{1 \mathrm{ct}}=1620 \mathrm{~km}
$$

The cities ace actually
1620 km apart.

Ex. A diagram of the rectangle below has a scale factor of 1:2. What are the new dimensions for the rectangle?

$$
\begin{aligned}
& K=\frac{\text { diag }}{\text { original }} \\
& \div \frac{1}{2}<\frac{x}{2} \text { (width) } x=1 \mathrm{~cm}
\end{aligned}
$$

5 cm

$$
=\frac{1}{2}=\frac{y}{5 \mathrm{~cm}} \quad \text { (length) } \quad y=2.5 \mathrm{~cm}
$$

The new dimensions ale $1 \mathrm{~cm} \times 2.5 \mathrm{~cm}$.

