\qquad Notes

Rate: a ratio (comparison) of two values which are measured in different units
Ex. $650 \mathrm{~km} / 7 \mathrm{~h}$ or $\$ 3.25 / 100 \mathrm{~g}$
Unit Rate: describing how many units of the first quantity correspond to ONE unit of the and quantity (used to compare rates). often see unit price in Ex. $\$ 1.9511 \mathrm{~b}$ or $50 \mathrm{~km} / \mathrm{h}$ grocery stores.

Expressing a Rate as a Unit Rate
Ex. 240 words /8 min

$$
\begin{aligned}
& 240 \mathrm{words} / 8 \mathrm{~min} \\
& \frac{240 \mathrm{words}}{48 \mathrm{~min}}=\frac{x}{1 \mathrm{~min}}
\end{aligned}
$$

$$
x=30 \text { words } / \text { min } \alpha \text { at ways on } x^{2}
$$

$$
x=\$ 1.501 \mathrm{ky}
$$

Comparing Rates
Ex. Natasha can buy a 12 kg turkey from her local butcher for $\$ 42.89$. The local supermarket has turkeys advertised in its weekly flyer for $\$ 1.49 / \mathrm{lb}$. There are about 2.2 lb in 1 kg . Which store has the lower price?
(1)

$$
=\frac{542.89}{12 \mathrm{~kg}}=\frac{5 x}{1 \mathrm{~kg}} \quad 53.57 \mathrm{~kg}
$$

(2)

$$
\begin{array}{r}
\frac{\$ 1.49}{51 / 6} \times \frac{2.216}{1 \mathrm{~kg}}= \\
=\$ 3.28 / \mathrm{kg} \\
\\
\\
\\
\text { better } \\
\text { deal. }
\end{array}
$$

$$
\begin{aligned}
& \text { Slope and Rates } \\
& \text { Slope } \left.=\frac{\text { rise }}{\text { run }} \text { (} \frac{\text { Vertical change }}{\text { horizontal change }}\right) \\
& \mathrm{n} \cdot \text { slope }=\frac{2 \mathrm{Km}}{30 \mathrm{~min}}=0.0 \overline{\mathrm{~km}} \frac{\mathrm{~km}}{\mathrm{~min}} \\
& \begin{aligned}
& \quad \frac{0.06 \mathrm{~km}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{~h}}=4 \mathrm{~km} / \mathrm{h} \\
& \text { B.slope }=\frac{0 \mathrm{~km}}{10 \mathrm{~min}}=0 \mathrm{~km} / \min \text { or } 0 \mathrm{~km} / \mathrm{Ch} \cdot \frac{\tilde{N}}{0}
\end{aligned} \\
& \text { c: slope }=\frac{3 \mathrm{~km}}{20 \mathrm{~min}}=\frac{0.15 \mathrm{~km}}{\mathrm{mgin}} \times \frac{60 \mathrm{~min}}{\mathrm{ln}}=9 \mathrm{~km} / \mathrm{h} \\
& \text { D. }-\frac{5 \mathrm{~km}}{5 \text { min }}=\frac{-1 \mathrm{~km}}{\text { min }} \times \frac{60 \mathrm{~min}}{\mathrm{n}}=-\frac{60 \mathrm{~km}}{\mathrm{~h}} \\
& \text { negative because }
\end{aligned}
$$

going in opposite direction

Solving Problems Involving Rates
Ex. The gas tank of Mario's new car has a capacity of 55 L . The owner's manual claims that the fuel efficiency of Mario's car is $7.6 \mathrm{~L} / 100 \mathrm{~km}$ on the highway. Before Mario's first big highway trip, he set his trip meter to 0 km so he could keep track of the total distance he drove. He started with the gas tank full. Each time he stopped to fill up the tank, he recorded the distance he had driven and the amount of gas he purchased:
\(\left.\begin{array}{|c|c|cc|}\hline Fill-up \& Total Distance Driven (km) \& Quantity of Gas Purchased (L) \\
\hline 1 \& 645 \\

\hline 2 \& 1037\end{array}\right\} 392 \mathrm{~km}\) is | difference |
| :---: |

Rate 1: $\frac{48 \mathrm{~L}}{645 \mathrm{~km}}=\frac{x}{100 \mathrm{~km}} 7.44 \mathrm{~L} 1100 \mathrm{~km} \checkmark$ better because you are usirgless gas

Rate $2: \frac{32.1 \mathrm{~L}}{392 \mathrm{~km}}=\frac{x}{100 \mathrm{~km}} 8.19 \mathrm{~L} / 100 \mathrm{~km} x$

Did the car achieve the manufacturer's fuel efficiency rating of $7.6 \mathrm{~L} / 100 \mathrm{~km}$ on either leg of the trip? Yes, on the lIst leg, not the Ind.

Ex. It takes 4 hours 15 minutes to drain tank A, which holds 300 L of water. It takes 2 hours 10 minutes to drain tank B, which holds 150 L of water. Which has the greater rate?
(A) $\frac{300 \mathrm{~L}}{255 \mathrm{~min}}=1.1821 \mathrm{~min}$
70.6 Lh \& greater rate

Ex. Person A runs 400 m in 1 min 15 sec . Person B runs 1 km in 5 min 20 sec . Who is the faster runner? $(\mathrm{m} / \mathrm{s})$

$$
\begin{aligned}
& \text { A: } \frac{400 \mathrm{~m}}{75 \mathrm{~s}}=5.3 \mathrm{~m} / \mathrm{s} \quad \text { Person A is faster } \\
& B: \frac{1000 \mathrm{~m}}{320 \mathrm{~s}}=3.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Rates
Where might the following rates be used?
a) $45 \mathrm{words} / \mathrm{min}$ -typing
b) $98.5 \mathrm{~d} / \mathrm{tgaS}$
c) 7.2 MBps phones acompatecs processing speed
d) 35 ppm (parts per million) scince-parille counts pollution counts
e) $0.05 \mathrm{mg} / \mathrm{kg}$ medication dosage by mass
f) 2500 rpm (rotations per minute) car engine rotation

Unit Analysis
Ex. A car travels at $80 \mathrm{~km} / \mathrm{h}$. Express this as $\mathrm{ft} / \mathrm{min}$. $(1 \mathrm{~km}=3281 \mathrm{ft})$

$$
\frac{80 \mathrm{~km}}{1 \mathrm{kr}} \times \frac{1 \mathrm{k}}{60 \mathrm{~min}} \times \frac{3281 \mathrm{ft}}{\mathrm{~km}}=\frac{80 \times 328 \mathrm{i}}{60} \frac{\mathrm{ft}}{\mathrm{~min}}=4374.67 \mathrm{ft} / \mathrm{min}
$$

Solving Problems With Rates
Ex. Paula is asked to order snacks for an office meeting of 180 people. She decides to order dessert squares, which come in boxes of 24 . She estimates that she will need 2.5 squares/person. How many boxes should she buy?

$$
\begin{aligned}
& \text { quares/person. How many boxes should she buy? } \\
& 180 \text { people } x \frac{2.5 \text { sq. }}{\text { person }}=450 \text { squares } \div 24=18.75 \text { boxes }
\end{aligned}
$$

she will need to buy 19 boxes

Ex. Amelia walks briskly, at 6 kmph . When she walks at this rate for $2 \mathrm{~h}, 120 \mathrm{~min}$ she burns 454 Cal. Bruce walks at a slower rate, $4 \mathrm{~km} / \mathrm{h}$, burning 62 Cal in 30 min . If Amelia walks for 3 h , how much longer will Bruce have to walk in order to burn the same amount of Calories?

$$
\text { Bruce } \frac{62 \mathrm{cal}}{30 \mathrm{~min}}=\frac{454 \mathrm{cal}}{x} \quad \begin{aligned}
x & =219.7 \mathrm{~min} \\
& \sim 3.66 \mathrm{~h}
\end{aligned}
$$

$$
\begin{aligned}
& 219.7-120 \\
&= 99.7 \mathrm{~min} \\
& \text { longer } \\
& \sim 1.66 \mathrm{~h} \text { longer }
\end{aligned}
$$

Ex. Jeff lives in a town near the Canada-U.S. border. He can either buy his gas in his town at $\$ 1.32 / L$ or travel across the border into the U.S. to fill up at $\$ 2.95 / \mathrm{gal}$. Which option makes the most sense economically if the exchange rate today is $\$ 1$ U.S./\$1.32 Can?
(1 gallon = 3.79 L)

$$
\begin{aligned}
\frac{\$ 2.95 \mathrm{ys}^{5}}{\text { gallon }} \times \frac{\$ 1.32 c A N}{\$ 85} \times \frac{\lg d_{0 n}}{3.79 L}= & \frac{2.95 \times 1.32}{3.79} \\
= & \$ 1.03 \mathrm{can} I_{L} \\
& \text { T better deal }
\end{aligned}
$$

