Kwadratycks Reevyou

1. $y=-\frac{1}{2}(x-2)(x+5)$

Does it open up or down? Down
Is it fatter or skinnier than $y=x^{2}$? fatter

Find:
x intercepts: 2 and -5
Axis of symmetry: $\frac{2+-5}{2}=-1.5$
y intercept:

$$
\begin{array}{lll}
y=-\frac{1}{2}(x-2)(x+5) & y=-\frac{1}{2}\left(x^{2}-2 x+5 x-10\right) & y=5 \\
& =-\frac{1}{2}\left(x^{2}+3 x-10\right)=-\frac{1}{2} x-\frac{3}{2} x+5 & \text { Domain: } x \in \mathbb{R} \\
\text { Vertex: } & & \text { Range: } y \in \mathbb{R},
\end{array}
$$

Graph it!

$$
\begin{aligned}
& y=-\frac{1}{2}(-1.5-2)(-1.5+5) \\
& y=-\frac{1}{2}(-3.5)(3.5)=6.125
\end{aligned} \quad \text { Vertex: }(-1.5,6.125)
$$

2. $y=2 x^{2}+2 x-24$

Does it open up or down? U_{P}
Is it fatter or skinnier than $y=x^{2}$? skinnier/
Find: $\quad y=2\left(x^{2}+x-12\right)$

$$
\begin{aligned}
& =2(x-3)(x+4) \\
& =2(x-3)
\end{aligned}
$$

x intercepts:

$$
x=3 \text { and }-4
$$

Axis of symmetry: $\frac{3+-4}{2}=-\frac{1}{2}$
y intercept:
intercept

$$
y=-24
$$

Vertex:

$$
\begin{aligned}
y & =2\left(-\frac{1}{2}-3\right)\left(-\frac{1}{2}+4\right) \\
& =-24.5 \quad(-0.5,-24.5)
\end{aligned}
$$

Graph it!
Domain: $x \in \mathbb{R}$
Range: $y \in \mathbb{R}, y \leqslant-24.5$
3. $y=\frac{1}{4}(x-5)^{2}+1$

Does it open up or down? up
Is it fatter or skinnier than $y=x^{2}$? fatter

Find:

Axis of symmetry: $x=5$
y intercept: $\quad y=\frac{1}{4}(0-5)^{2}+1$

$$
=\frac{1}{4}(25)+1=7.25
$$

Vertex: $(5,1)$

Graph it!
Domain: $\mathcal{E \in \mathbb { R }}$
Range: $y \in \mathbb{R} \quad y \geqslant 1$
4. Find the equations for the following graphs in

- Factored form and
- Vertex form

$$
\begin{array}{l|l}
y=a(x+3)(x-2) & y=a(x+0.5)^{2}-12.5 \\
-12=a(3)(-2) & \begin{array}{l}
-12=a(0.5)^{2}-12.5 \\
\frac{-12}{-6}=\frac{a(-6)}{-6} \\
y=2(x+3)(x-2)
\end{array} \\
\frac{-12=a(0.25)-12.5}{}+12.5 \\
\hline 12.5 \quad \frac{0.5=a(0.25)}{0.25} \frac{(125}{0.25} a=2 \quad y
\end{array}
$$

5. A grasshopper jumps off a rock and his path is modeled by the equation

$$
h=-2 t^{2}+7 t+12
$$

where h is the height in centimetres and t is the time in seconds.
a) How long is the grasshopper in the air?

$$
\text { Desmos: find } \begin{aligned}
x & \text { intercepts } \\
& \rightarrow 4.76 \mathrm{~s} .
\end{aligned}
$$

b) What is the highest point of his leap?

Desmos: find y coordinate of vertex
18.125 cm
c) How high is the rock?

$$
y \text { intercept: } 12 \mathrm{~cm}
$$

d) When is it 10 cm above the ground?
also graph $y=10$ of find intersection

$$
3.7665
$$

6. A farmer wants to make a rectangular pen for his sheep. He has 60 mtencing material to cover three sides with the other side being a brick wall. He wants to use the fencing material to maximize the space for his sheep. How should he choose length and width of the pen to achieve his objective?

$$
\begin{aligned}
& \text { let } l= \text { length } \\
& w= w i d t h \\
& l+2 w=60 \\
& l=60-2 w \\
& A= l x w \\
&=(60-2 w) w=60 w-2 w{ }^{2}
\end{aligned}
$$

Use Desmos to graph
Vertex gives max.

$$
\text { max area }=450 \mathrm{~m}^{2}
$$

7. A kangaroo kicks a ball and it lands 20 metres from where he kicked it. If it reaches a maximum when height of 7 m , write an equation to model the path of the ball.

$$
\text { width }=15 \mathrm{~m}
$$

$$
\begin{aligned}
& y= a(x-0)(x-20) \\
& y= a x(x-20) \\
& \text { sub in vertex } \\
& 7= a(10)(10-20) \\
& 7= a(10)(-10) \\
& \frac{7=a(-100)}{-100} \\
& a=\frac{-7}{100} \text { or }-0.07
\end{aligned}
$$

$$
\text { so } \frac{450}{15}=30 \mathrm{~m}
$$

= length

Equation:

$$
y=\frac{-7}{100} x(x-20)
$$

8. Anton throws a rock off a 12 m cliff. It reaches a maximum height of 20 m from the bottom of the cliff when it is 8 m from the base of the cliff. Write an equation to model the path of the

How far from the base of the cliff does it land?
looking for x intercept $\quad(y=0)$
use Desmos:
20.649 m from base
of cliff
9. Use the quadratic formula to solve the following equations:
a) $2 x^{2}+7 x+4=0$

$$
\begin{aligned}
& \begin{aligned}
& y=\frac{-b \pm \sqrt{b 2-4 a c}}{2 a}=-7 \pm \frac{\sqrt{72-4(2)(4)}}{2(2)} \quad 50 x= \\
&=\frac{-7+\sqrt{15}}{4} \text { or } \frac{-7-\sqrt{49-32}}{4} \\
& \text { b) }-3 x^{2}-7 x+25=0
\end{aligned} \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
y & =7 \pm \frac{\sqrt{(-7)^{2}-4(-3)(25)}}{2(-3)} \\
& =\frac{7 \pm \sqrt{49+300}}{-6} \\
& =7 \pm \sqrt{349}
\end{aligned}
$$

$$
\begin{aligned}
& 12=a(0-8)^{2}+20 \\
& 12=a(64)+20 \\
& -20 \\
& \frac{-8}{64}=\frac{a(64)}{64} \quad a=\frac{-1}{8}
\end{aligned}
$$

$$
\text { Equation: } y=-\frac{1}{8}(x-8)^{2}+20
$$

